NO LINKS!! Use the method of substitution to solve the system. (If there's no solution, enter no solution). Part 8z

Answer:
=====================
Answer:
[tex](x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{\dfrac{1}{10},\dfrac{1}{200}} \; \right)\quad \textsf{(larger $x$-value)}[/tex]
Step-by-step explanation:
Given system of equations:
[tex]\begin{cases}2y=x^2\\ \;\;y=5x^3\end{cases}[/tex]
To solve by the method of substitution, substitute the second equation into the first equation and rearrange so that the equation equals zero:
[tex]\begin{aligned}y=5x^3 \implies 2(5x^3)&=x^2\\10x^3&=x^2\\10x^3-x^2&=0\\\end{aligned}[/tex]
Factor the equation:
[tex]\begin{aligned}10x^3-x^2&=0\\x^2(10x-1)&=0\end{aligned}[/tex]
Apply the zero-product property and solve for x:
[tex]x^2=0 \implies x=0[/tex]
[tex]10x-1=0 \implies x=\dfrac{1}{10}[/tex]
Substitute the found values of x into the second equation and solve for y:
[tex]\begin{aligned}x=0 \implies y&=5(0)^3\\y&=0\end{aligned}[/tex]
[tex]\begin{aligned}x=0 \implies y&=5\left(\dfrac{1}{10}\right)^3\\y&=5 \cdot \dfrac{1}{1000}\\y&=\dfrac{1}{200}\end{aligned}[/tex]
Therefore, the solutions are:
[tex](x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{\dfrac{1}{10},\dfrac{1}{200}} \; \right)\quad \textsf{(larger $x$-value)}[/tex]