Respuesta :

Answer:

  • (0, 0)
  • (0.1, 0.005)

=====================

Given system

  • 2y = x²
  • y = 5x³

Substitute the value of y into first equation

  • 2*5x³ = x²
  • 10x³ - x² = 0
  • x²(10x - 1) = 0
  • x = 0 and 10x - 1 = 0
  • x = 0 and x = 0.1

Find the value of y

  • x = 0 ⇒ y = 5*0³ = 0
  • x = 0.1 ⇒ y = 5*(0.1)³ = 0.005

Answer:

[tex](x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]

[tex](x,y)=\left(\; \boxed{\dfrac{1}{10},\dfrac{1}{200}} \; \right)\quad \textsf{(larger $x$-value)}[/tex]

Step-by-step explanation:

Given system of equations:

[tex]\begin{cases}2y=x^2\\ \;\;y=5x^3\end{cases}[/tex]

To solve by the method of substitution, substitute the second equation into the first equation and rearrange so that the equation equals zero:

[tex]\begin{aligned}y=5x^3 \implies 2(5x^3)&=x^2\\10x^3&=x^2\\10x^3-x^2&=0\\\end{aligned}[/tex]

Factor the equation:

[tex]\begin{aligned}10x^3-x^2&=0\\x^2(10x-1)&=0\end{aligned}[/tex]

Apply the zero-product property and solve for x:

[tex]x^2=0 \implies x=0[/tex]

[tex]10x-1=0 \implies x=\dfrac{1}{10}[/tex]

Substitute the found values of x into the second equation and solve for y:

[tex]\begin{aligned}x=0 \implies y&=5(0)^3\\y&=0\end{aligned}[/tex]

[tex]\begin{aligned}x=0 \implies y&=5\left(\dfrac{1}{10}\right)^3\\y&=5 \cdot \dfrac{1}{1000}\\y&=\dfrac{1}{200}\end{aligned}[/tex]

Therefore, the solutions are:

[tex](x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]

[tex](x,y)=\left(\; \boxed{\dfrac{1}{10},\dfrac{1}{200}} \; \right)\quad \textsf{(larger $x$-value)}[/tex]

ACCESS MORE