NO LINKS!! Use the method of substitution to solve the system. (If there's no solution, enter no solution). Part 7z
![NO LINKS Use the method of substitution to solve the system If theres no solution enter no solution Part 7z class=](https://us-static.z-dn.net/files/d13/9e716ad1f0b0b328eba202a58e1af825.jpg)
Answer:
=====================
Answer:
[tex](x,y)=\left(\; \boxed{-3,4} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{5,0} \; \right)\quad \textsf{(larger $x$-value)}[/tex]
Step-by-step explanation:
Given system of equations:
[tex]\begin{cases}\;x+2y=5\\x^2+y^2=25\end{cases}[/tex]
To solve by the method of substitution, rearrange the first equation to make x the subject:
[tex]\implies x=5-2y[/tex]
Substitute the found expression for x into the second equation and rearrange so that the equation equals zero:
[tex]\begin{aligned}x=5-2y \implies (5-2y)^2+y^2&=25\\25-20y+4y^2+y^2&=25\\5y^2-20y+25&=25\\5y^2-20y&=0\end{aligned}[/tex]
Factor the equation:
[tex]\begin{aligned}5y^2-20y&=0\\5y(y-4)&=0\end{aligned}[/tex]
Apply the zero-product property and solve for y:
[tex]5y=0 \implies y=0[/tex]
[tex]y-4=0 \implies y=4[/tex]
Substitute the found values of y into the first equation and solve for x:
[tex]\begin{aligned}y=0 \implies x+2(0)&=5\\x&=5\end{aligned}[/tex]
[tex]\begin{aligned}y=4 \implies x+2(4)&=5\\x+8&=5\\x&=-3\end{aligned}[/tex]
Therefore, the solutions are:
[tex](x,y)=\left(\; \boxed{-3,4} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{5,0} \; \right)\quad \textsf{(larger $x$-value)}[/tex]