Respuesta :

Answer:

  • (0, 0)
  • (1/8, 1/128)

=====================

Given system

  • 2y = x²
  • y = 4x³

Double the second equation

  • 2y = x²
  • 2y = 8x³

Solve by elimination

  • x² = 8x³
  • x²(8x - 1) = 0
  • x = 0 and 8x - 1 = 0
  • x = 0 and x = 1/8

Find the value of y

  • x = 0y = 0
  • x = 1/8 ⇒ y = 4*(1/8)³ = 1/128

Answer:

[tex](x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]

[tex](x,y)=\left(\; \boxed{\dfrac{1}{8}, \dfrac{1}{128}} \; \right)\quad \textsf{(larger $x$-value)}[/tex]

Step-by-step explanation:

Given system of equations:

[tex]\begin{cases}2y=x^2\\\;\;y=4x^3\end{cases}[/tex]

To solve by the method of substitution, substitute the second equation into the first equation, rearrange so that the equation equals zero, then factor:

[tex]\begin{aligned}y=4x^3 \implies 2(4x^3)&=x^2\\8x^3&=x^2\\8x^3-x^2&=0\\x^2(8x-1)&=0\end{aligned}[/tex]

Apply the zero-product property to solve for x:

[tex]\implies x^2=0 \implies x=0[/tex]

[tex]\implies 8x-1=0 \implies x=\dfrac{1}{8}[/tex]

Substitute the found values of x into the second equation and solve for y:

[tex]\begin{aligned}x=0 \implies y&=4(0)^3\\y&=0\end{aligned}[/tex]

[tex]\begin{aligned}x=\dfrac{1}{8} \implies y&=4\left( \dfrac{1}{8}\right)^3\\y&=4 \cdot \dfrac{1}{512}\\y&=\dfrac{1}{128}\end{aligned}[/tex]

Therefore, the solutions are:

[tex](x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]

[tex](x,y)=\left(\; \boxed{\dfrac{1}{8}, \dfrac{1}{128}} \; \right)\quad \textsf{(larger $x$-value)}[/tex]

ACCESS MORE