NO LINKS!! Use the method of substitution to solve the system. (if there's no solution, enter no solution). Part 4z
![NO LINKS Use the method of substitution to solve the system if theres no solution enter no solution Part 4z class=](https://us-static.z-dn.net/files/d92/e76914026d27f246d800fba45f9faab8.jpg)
Answer:
=====================
Answer:
[tex](x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{\dfrac{1}{8}, \dfrac{1}{128}} \; \right)\quad \textsf{(larger $x$-value)}[/tex]
Step-by-step explanation:
Given system of equations:
[tex]\begin{cases}2y=x^2\\\;\;y=4x^3\end{cases}[/tex]
To solve by the method of substitution, substitute the second equation into the first equation, rearrange so that the equation equals zero, then factor:
[tex]\begin{aligned}y=4x^3 \implies 2(4x^3)&=x^2\\8x^3&=x^2\\8x^3-x^2&=0\\x^2(8x-1)&=0\end{aligned}[/tex]
Apply the zero-product property to solve for x:
[tex]\implies x^2=0 \implies x=0[/tex]
[tex]\implies 8x-1=0 \implies x=\dfrac{1}{8}[/tex]
Substitute the found values of x into the second equation and solve for y:
[tex]\begin{aligned}x=0 \implies y&=4(0)^3\\y&=0\end{aligned}[/tex]
[tex]\begin{aligned}x=\dfrac{1}{8} \implies y&=4\left( \dfrac{1}{8}\right)^3\\y&=4 \cdot \dfrac{1}{512}\\y&=\dfrac{1}{128}\end{aligned}[/tex]
Therefore, the solutions are:
[tex](x,y)=\left(\; \boxed{0,0} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{\dfrac{1}{8}, \dfrac{1}{128}} \; \right)\quad \textsf{(larger $x$-value)}[/tex]