NO LINKS!! Use the method of to solve the system. (if there's no solution, enter no solution). Part 2z
![NO LINKS Use the method of to solve the system if theres no solution enter no solution Part 2z class=](https://us-static.z-dn.net/files/dd7/c7bdb0da7d94b70b03305fdc73ac298a.jpg)
Answer:
smaller x-value: (-4, 18)
larger x-value: (3, 11)
Step-by-step explanation:
Solving for x:
y = x^2 + 2
x + y = 14 ---> y = 14 - x
14 - x = x^2 + 2
0 = x^2 + x - 12
0 = (x + 4)(x - 3)
x = -4 or 3
Solving for y:
If x = -4
y = 14 + 4
y = 18
if x = 3
y = 14 - 3
y = 11
Answer:
[tex](x,y)=\left(\; \boxed{-4,18} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{3,11} \; \right)\quad \textsf{(larger $x$-value)}[/tex]
Step-by-step explanation:
Given system of equations:
[tex]\begin{cases}\phantom{bbbb}y=x^2+2\\x+y=14\end{cases}[/tex]
To solve by the method of substitution, rearrange the second equation to make y the subject:
[tex]\implies y=14-x[/tex]
Substitute the found expression for y into the first equation and rearrange so that the equation equals zero:
[tex]\begin{aligned}y=14-x \implies 14-x&=x^2+2\\x^2+2&=14-x\\x^2+2+x&=14\\x^2+x-12&=0\end{aligned}[/tex]
Factor the quadratic:
[tex]\begin{aligned}x^2+x-12&=0\\x^2+4x-3x-12&=0\\x(x+4)-3(x+4)&=0\\(x-3)(x+4)&=0\end{aligned}[/tex]
Apply the zero-product property and solve for x:
[tex]\implies x-3=0 \implies x=3[/tex]
[tex]\implies x+4=0 \implies x=-4[/tex]
Substitute the found values of x into the second equation and solve for y:
[tex]\begin{aligned}x=3 \implies 3+y&=14\\y&=14-3\\y&=11\end{aligned}[/tex]
[tex]\begin{aligned}x=-4 \implies -4+y&=14\\y&=14+4\\y&=18\end{aligned}[/tex]
Therefore, the solutions are:
[tex](x,y)=\left(\; \boxed{-4,18} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{3,11} \; \right)\quad \textsf{(larger $x$-value)}[/tex]