NO LINKS!! Use the method of to solve the system. (if there's no solution, enter no solution). Part 1z

Answer:
-2,-9
5,12
Step-by-step explanation:
Set the equations equal to each other
x^2 - 13 = 3x - 3
x^2 - 10 = 3x
x^2 - 3x - 10 = 0
(x-5)(x+2) = 0
x = 5 x = -2
Now choose on the equations to plug into
y = 3x - 3
y = 3(-2) - 3 = -9
y = 3(5) - 3 = 12
-2,-9
5,12
Answer:
[tex](x,y)=\left(\; \boxed{-2,-9} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{5,12} \; \right)\quad \textsf{(larger $x$-value)}[/tex]
Step-by-step explanation:
Given system of equations:
[tex]\begin{cases}y=x^2-13\\y=3x-3\end{cases}[/tex]
To solve by the method of substitution, substitute the first equation into the second equation and rearrange so that the equation equals zero:
[tex]\begin{aligned}x^2-13&=3x-3\\x^2-3x-13&=-3\\x^2-3x-10&=0\end{aligned}[/tex]
Factor the quadratic:
[tex]\begin{aligned}x^2-3x-10&=0\\x^2-5x+2x-10&=0\\x(x-5)+2(x-5)&=0\\(x+2)(x-5)&=0\end{aligned}[/tex]
Apply the zero-product property and solve for x:
[tex]\implies x+2=0 \implies x=-2[/tex]
[tex]\implies x-5=0 \implies x=5[/tex]
Substitute the found values of x into the second equation and solve for y:
[tex]\begin{aligned}x=-2 \implies y&=3(-2)-3\\y&=-6-3\\y&=-9\end{aligned}[/tex]
[tex]\begin{aligned}x=5 \implies y&=3(5)-3\\y&=15-3\\y&=12\end{aligned}[/tex]
Therefore, the solutions are:
[tex](x,y)=\left(\; \boxed{-2,-9} \; \right)\quad \textsf{(smaller $x$-value)}[/tex]
[tex](x,y)=\left(\; \boxed{5,12} \; \right)\quad \textsf{(larger $x$-value)}[/tex]