Respuesta :
[tex]Vy = V*sin(78)[/tex]
[tex]Vy = V*sin(78) - gt[/tex]
[tex]0 = V*sin(78) - 10t[/tex]
[tex]t = \frac{18*sin(78)}{10} [/tex]
[tex]Sy = S_0y + V_0y*t - \frac{1}{2} *gt^2[/tex]
[tex]h = Sy = 18*sin(78)*( \frac{18*sin(78)}{10} ) - 5*( \frac{18^2*sin^2(78)}{100}) [/tex]
[tex]h = \frac{3240*sin^2(78)}{100} - \frac{1620*sin^2(78)}{100}[/tex]
[tex]h = \frac{81*sin^2(78)}{5} [/tex]
[tex]Vy = V*sin(78) - gt[/tex]
[tex]0 = V*sin(78) - 10t[/tex]
[tex]t = \frac{18*sin(78)}{10} [/tex]
[tex]Sy = S_0y + V_0y*t - \frac{1}{2} *gt^2[/tex]
[tex]h = Sy = 18*sin(78)*( \frac{18*sin(78)}{10} ) - 5*( \frac{18^2*sin^2(78)}{100}) [/tex]
[tex]h = \frac{3240*sin^2(78)}{100} - \frac{1620*sin^2(78)}{100}[/tex]
[tex]h = \frac{81*sin^2(78)}{5} [/tex]
Answer:
[tex]h = 15.8 m[/tex]
Explanation:
As we know that the velocity of the apple is given as
[tex]v = 18 m/s[/tex] at an angle of 78 degree from horizontal
so here two components of the velocity is given as
[tex]v_x = 18 cos78[/tex]
[tex]v_y = 18 sin78[/tex]
now as it rises up then due to deceleration of gravity it will slow down and finally comes to rest
so here we can use kinematics to find the maximum height
[tex]v_f^2 - v_i^2 = 2 a h[/tex]
[tex]0 - (18sin78)^2 = 2(-9.81)h[/tex]
[tex]h = 15.8 m[/tex]