Respuesta :

we are given

[tex] y=-2x^2 [/tex]

[tex] y=x-2 [/tex]

we can eliminate x from second equation

[tex] x=y+2 [/tex]

now, we can plug back in first equation

[tex] y=-2(y+2)^2 [/tex]

now, we can expand it

[tex] y=-2(y^2+4y+4) [/tex]

[tex] y=-2y^2-8y-8 [/tex]

so, option-C.....................Answer

Answer:

Option C - [tex]y=-2y^2-8y-8;\ x=y+2[/tex]

Step-by-step explanation:

Given : The system of equation [tex]y=-2x^2\ ;y=x-2[/tex]

To find : Which system is equivalent to given system?

Solution :

Let Equation 1- [tex]y=-2x^2[/tex]

Equation 2 - [tex]y=x-2[/tex]

We can re-write equation 2 in terms of x as  [tex]x=y+2[/tex]

Substitute the value of x in equation 1,

[tex]y=-2(y+2)^2[/tex]

Solve,

[tex]y=-2(y^2+2^2+2(y)(2))[/tex]

[tex]y=-2(y^2+4+4y)[/tex]

[tex]y=-2y^2-8-8y[/tex]

[tex]y=-2y^2-8y-8[/tex]

The required equations are [tex]y=-2y^2-8y-8;\ x=y+2[/tex]

Therefore, option C is correct.