Use a table of function values to approximate an x-value in which the exponential function exceeds the polynomial function.f(x) = 3(4)^(2x-4)h(x) = (x + 2)^3 + 1

Respuesta :

X= 2 I believe my friend

Answer:

For x < -3 or 3.438 > 3 the exponential function exceeds the polynomial function.

Step-by-step explanation:

The given functions are

[tex]f(x)=3(4)^(2x-4)[/tex]

[tex]h(x)=(x+2)^3+1[/tex]

In the given functions f(x) is an exponential function and h(x) is polynomial.

We need to find the x-value in which the exponential function exceeds the polynomial function.

The table of values is shown below,

x            f(x)                    h(x)

-4        1.8×10⁻⁷              -7                   f(x)>h(x)

-3            0                      0                   f(x)=h(x)

-2         4.6×10⁻⁵             1                    f(x)<h(x)

0          0.0012                9                   f(x)<h(x)

2              3                     65                 f(x)<h(x)

3.438       161.845          161.845           f(x)=h(x)

4             768                 217                 h(x)>f(x)

From the above table it is clear that for x < -3 or 3.438 > 3 the exponential function exceeds the polynomial function.

Ver imagen erinna
ACCESS MORE