Respuesta :
Mass of 1 mole of brick is [tex]\rm 2.4\;\times\;10^2^4[/tex] kg. 2500 moles of brick will weigh the same as the mass of the earth.
(a) Mass of 1 mole of bricks:
Mass of 1 mole = weight [tex]\times[/tex] Avagadro number
Mass of 1 mole brick = 4.0 [tex]\times\;6.023\;\times\;10^2^3[/tex]
Mass of 1 mole of brick is [tex]\rm 2.4\;\times\;10^2^4[/tex] kg.
(b) Number of moles of bricks having mass equal to earth:
= [tex]\rm \dfrac{mass\;of\;earth}{mass\;of\;1\;mole\;of\;brick}[/tex]
= [tex]\rm \dfrac{6.0\;\times\;10^2^7}{2.4\;\times\;10^2^4}[/tex]
= 2.5 [tex]\rm \times\;10^3[/tex] moles
= 2500 moles of brick will weigh the same as the mass of the earth.
For more information, refer to the link:
https://brainly.com/question/20486415
To have the mass equal to that of earth, the required number of moles of bricks are [tex]2.5 \times 10^{3} \;\rm moles[/tex].
Given data:
The mass of brick is, m = 4.0 kg.
The mass of Earth is, [tex]M=6.0 \times 10^{27} \;\rm kg[/tex].
Number of moles of brick is, n = 1.
(a)
The mass of 1 mole of bricks is,
[tex]m'= \rm m \rm \times Avogadro \;Number\\m'= 4.0 \rm \times 6.023 \times 10^{23}\\m' =2.4 \times 10^{24} \;\rm kg[/tex]
Thus, the mass of 1 mole of bricks is [tex]2.4 \times 10^{24} \;\rm kg[/tex].
(b)
The number of moles (N) of brick to have mass equal to the mass of the earth is expressed as,
[tex]N=\dfrac{M}{m'} \\\\N=\dfrac{6.0 \times 10^{27}}{2.4 \times 10^{24}} \\\\N=2.5 \times 10^{3} \;\rm moles[/tex]
Thus, for having the mass equal to the mass of the earth, the brick should have [tex]2.5 \times 10^{3}[/tex] number of moles.
Learn more about the mole concept here:
https://brainly.com/question/20483253