Respuesta :
Answer:
The minimum height of the flag is 9 feet.
Step-by-step explanation:
The function representing the height of the flag is given by,
[tex]h(t)=3\sin (\frac{4pi}{5}(t-\frac{1}{2}))+12[/tex]
It is required to find the minimum height of the flag.
As, we know,
The function [tex]\sin t[/tex] have values between [-1,1] for all values of t.
So, [tex]\sin (\frac{4pi}{5}(t-\frac{1}{2}))[/tex] have values between [-1,1] for all values of t.
Then, [tex]3\sin (\frac{4pi}{5}(t-\frac{1}{2}))[/tex] have values between [-3,3] for all values of t.
Thus, [tex]h(t)=3\sin (\frac{4pi}{5}(t-\frac{1}{2}))+12[/tex] have values between [-3+12,3+12] for all values of t.
That is, [tex]h(t)=3\sin (\frac{4pi}{5}(t-\frac{1}{2}))+12[/tex] have values between [9,15] for all values of t.
Hence, the minimum height of the flag is 9 feet.