Let [tex]u=\sin x[/tex], then [tex]\mathrm du=\cos x\,\mathrm dx[/tex]. Now
[tex]\displaystyle\int\frac{\cos x}{\sqrt{\sin x}}\,\mathrm dx=\int\frac{\mathrm du}{\sqrt u}=\int u^{-1/2}\,\mathrm du[/tex]
The power rule for integration gives
[tex]\displaystyle\int u^{-1/2}\,\mathrm du=2u^{1/2}+C=2\sqrt{\sin x}+C[/tex]