c) I have blots, bleets, and blits in a bag. The ratio of blots to bleets is 3:4. The ratio of bleets to blits is 5:6. What is the ratio of the number of blots to bits?
![c I have blots bleets and blits in a bag The ratio of blots to bleets is 34 The ratio of bleets to blits is 56 What is the ratio of the number of blots to bits class=](https://us-static.z-dn.net/files/dc9/819c226415e259a5f20cfe4320267402.png)
Simplifying we have:
[tex]\frac{15}{24}=\frac{3\cdot5}{3\cdot8}=\frac{5}{8}[/tex]Then, the ratio of the number of blots to blits is 5:8.
b) ratio butter of sugar is 1:2. Then
[tex]\frac{\text{butter}}{\text{sugar}}=\frac{1}{2}=\frac{x}{\frac{1}{2}\text{cup}}[/tex]Solving the equation we have
[tex]\begin{gathered} \frac{1}{2}=\frac{x}{\frac{1}{2}} \\ \frac{1}{2}\cdot\frac{1}{2}=x \\ \frac{1}{4}=x \end{gathered}[/tex]Then, Jake needs 1/4 cup of butter.
Similarly, ratio flour of sugar is 1:2. Then
[tex]\frac{\text{flour}}{\text{sugar}}=\frac{6}{2}=\frac{x}{\frac{1}{2}\text{cup}}[/tex]Solving the equation we have
[tex]\begin{gathered} \frac{6}{2}=\frac{x}{\frac{1}{2}} \\ \frac{6}{2}\cdot\frac{1}{2}=x \\ 3\cdot\frac{1}{2}=x \\ \frac{3}{2}=x \end{gathered}[/tex]Then, Jake needs 3/2 cup of flour.
Finally, ratio sugar of milk is 2:1. Then
[tex]\frac{\text{sugar}}{\text{milk}}=\frac{2}{1}=\frac{\frac{1}{2}\text{ cup}}{x}[/tex]Solving the equation we have
[tex]\begin{gathered} \frac{2}{1}=\frac{\frac{1}{2}}{x} \\ 2=\frac{\frac{1}{2}}{x} \\ 2x=\frac{1}{2} \\ x=\frac{\frac{1}{2}}{\frac{2}{1}} \\ x=\frac{1\cdot1}{2\cdot2} \\ x=\frac{1}{4} \end{gathered}[/tex]Then, Jake needs 1/4 cup of milk.