are the triangles similar? if so what is the scale factor?
![are the triangles similar if so what is the scale factor class=](https://us-static.z-dn.net/files/d89/94b85c785d66797a8e34e2a3d55b03e2.png)
a) Yes, The scale factor is 3/2
Explanation
Step 1
to check if the triangles are similar, we need to prove that the ratios of the longest side and one sideof the triangle are similar
so
let
[tex]ratio=\frac{longest\text{ side}}{side}[/tex]hence
[tex]\begin{gathered} ratio_1=\frac{8}{5}=1.6 \\ ratio_2=\frac{12}{7.5}=1.6 \end{gathered}[/tex]therefore, the triangles are similar
Step 2
now, to find the scale factor we use the formula
[tex]scale\text{ factor =}\frac{final\text{ length }}{original\text{ length}}[/tex]so, let's take the longest side on each triangle
[tex]\begin{gathered} final\text{ length=12} \\ original\text{ length=8} \end{gathered}[/tex]replace and calculate
[tex]\begin{gathered} scale\text{ factor =}\frac{final\text{ length }}{original\text{ length}} \\ scale\text{ factor =}\frac{12}{8}=\frac{3}{2} \end{gathered}[/tex]therefore, the answer is
a) Yes, The scale factor is 3/2
I hope this helps you