Solve sin(x) = 0.23 on 0 ≤ x < 2T.There are two solutions, A and B, with A
![Solve sinx 023 on 0 x lt 2TThere are two solutions A and B with A class=](https://us-static.z-dn.net/files/d02/90f0290e653dc23bc69d6dc9fbb9b27c.png)
Given -
sin(x) = 0.23 on 0 ≤ x < 2π
To Find -
Two solutions, A and B =?
Step-by-Step Explanation -
[tex]0.23\text{ = }\frac{23}{100}[/tex]So, the two solutions will be -
[tex]\begin{gathered} \sin^{-1}(\frac{23}{100})\text{ and }\pi\text{ - }\sin^{-1}(\frac{23}{100}) \\ \\ So,\text{ }\sin^{-1}(\frac{23}{100})\text{ = 0.232} \\ \\ Also,\text{ }\pi\text{ - }\sin^{-1}(\frac{23}{100})\text{ = 3.141 - 0.232 = 2.909} \end{gathered}[/tex]Now, Since A < B
So,
A = 0.232
B = 2.909
Final Answer -
A = 0.232
B = 2.909