QUESTION 6 1 POINTA 20-foot string of lights will be attached to the top of a 12-foot pole for a holiday display. How far from the base of the poleshould the end of the string of lights be anchored?20 AProvide your answer below:ftFEEDBACK+O

EXPLANATION
Since we have the given sides, we can apply the Pythagorean Theorem in order to obtain the needed distance:
[tex]Hypotenuse^2=Larger\text{ side}^2+Smaller\text{ side}^2[/tex]Plugging in the terms into the expression:
[tex]20^2=Larger\text{ side\textasciicircum2+12}^2[/tex]Subtracting 12^2 to both sides:
[tex]20^2-12^2=Larger\text{ side}^2[/tex]Computing the powers:
[tex]400-144=Larger\text{ side}^2[/tex]Subtracting numbers:
[tex]256=Larger\text{ side}^2[/tex]Applying the square root to both sides:
[tex]\sqrt{256}=Larger\text{ side}[/tex]Computing the root:
[tex]16=Larger\text{ side}[/tex]Switching sides:
[tex]Larger\text{ side =16}[/tex]In conclusion, the solution is 16ft