In the diagram, find the segment length of FD.(Assume FG is tangent.) G X +9 D 18 E 12
![In the diagram find the segment length of FDAssume FG is tangent G X 9 D 18 E 12 class=](https://us-static.z-dn.net/files/d27/e802d54720f2a784c75b9c64c8d65066.png)
ANSWER
FD = 27
EXPLANATION
By the tangent-secant theorem:
[tex]FG^2=EF\cdot FD[/tex]So we have:
[tex]\begin{gathered} 18^2=12\cdot FD \\ FD=\frac{18^2}{12} \\ FD=27 \end{gathered}[/tex]