Respuesta :

Given:

[tex]f(x)=3^x[/tex]

To find:

The type of function by completing the table and graphing the function

Explanation:

When x = -2,

[tex]\begin{gathered} y=3^{-2} \\ =\frac{1}{3^2} \\ =\frac{1}{9} \\ =0.11 \end{gathered}[/tex]

When x = -1,

[tex]\begin{gathered} y=3^{-1} \\ =\frac{1}{3} \\ =0.33 \end{gathered}[/tex]

When x = 0,

[tex]\begin{gathered} y=3^0 \\ =1 \end{gathered}[/tex]

When x = 1,

[tex]\begin{gathered} y=3^1 \\ =3 \end{gathered}[/tex]

When x = 2,

[tex]\begin{gathered} y=3^2 \\ =9 \end{gathered}[/tex]

Therefore, the table values are,

Then, the graph will be,

Since the domain of the function is real numbers and the range of the function is a set of positive real numbers.

Therefore, it is an exponential function.

Ver imagen HaraP187183
Ver imagen HaraP187183
ACCESS MORE