simplify the expression tan (3 x+ 2pi) as the tangent of a single angle
![simplify the expression tan 3 x 2pi as the tangent of a single angle class=](https://us-static.z-dn.net/files/da4/86aaf1e131ff849b6edd5e5c1cf6acf6.png)
tan(3x)
Explanation
[tex]\tan (3x+2\pi)[/tex]Step 1
remember some property
[tex]\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a\tan b}[/tex]then
[tex]\begin{gathered} \tan (3x+2\pi)=\frac{\tan 3x+\tan 2\pi}{1-\tan 3x\tan 2\pi}\text{ Equation(1)} \\ \tan \text{ 2}\pi=0 \\ so \\ \tan (3x+2\pi)=\frac{\tan 3x+0}{1-\tan 3x\cdot0}\text{ } \\ \tan (3x+2\pi)=\frac{\tan \text{ 3x}}{1-0}=\frac{\tan \text{ 3x}}{1} \\ \tan (3x+2\pi)=\tan (3x) \end{gathered}[/tex]I hope this helps you