First, let's calculate the change in temperature, which results in making the next subtraction:
[tex]\Delta T=\text{ T}_{fin}\text{ - T}_{in}=\text{ 14\degree C-17\degree C= -3\degree C}[/tex]Now, let's calculate the enthalpy of the reaction with the next assumptions:
[tex]\begin{gathered} -\Delta H_r=\text{ Q}_{sen}^{vinegar}+\text{ Q}_{sen}^{NaHCO_3} \\ \\ As\text{ we are told in the exercise, we ignore the second term. Then:} \\ \\ -\Delta H_r=\text{ Q}_{sen}^{vinegar} \end{gathered}[/tex]We also have to make the following assumptions: the vinegar's thermal mass and density are the same as the water's. Then, we can make the calculation:
[tex]\begin{gathered} Q_{sen}^{vinegar}=\text{ m*Cp*}\Delta T \\ \\ Where\text{ m is the mass. } \\ Cp\text{ is the specific thermal capacity. } \\ \Delta T\text{ is the change in temperature. } \end{gathered}[/tex][tex]Q_{sen}^{vinegar}=\text{ 25 mL * }\frac{1\text{ g}}{1\text{ mL}}*\text{ 4.2 }\frac{J}{g*^oC}*(-3^oC)=\text{ -315 J = -}\Delta H_r[/tex]So, the reaction enthalpy equals 315 J approx.