Respuesta :

Answer:

The required interpolation in adjusted 2020 is 0.50

Explanation:

We find the interpolation using the formula:

[tex]y=y_1+\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

Let us choose these points as follows:

[tex]\begin{gathered} x_1=7.69 \\ x_2=7.87 \\ y_1=3.80 \\ y_2=5.15 \end{gathered}[/tex]

So,

[tex]\begin{gathered} y=3.80+\frac{5.15-3.80}{7.87-7.69}(x-7.69) \\ \\ =3.80+\frac{1.35}{0.18}(x-7.69) \\ \\ =3.80+7.5(x-7.69) \\ y=7.5x-53.875 \end{gathered}[/tex]

In adjusted 2020, we have x = 7.25, using this, we have:

[tex]\begin{gathered} y=7.5(7.25)-53.875 \\ =54.375-53.875 \\ =0.50 \end{gathered}[/tex]

ACCESS MORE