At first, we will find the volume of the cone and the volume of the sphere, then subtract them to find the answer
The rule of the volume of the cone is
[tex]V_c=\frac{1}{3}\times\pi\times r^2\times h[/tex]Since the height of the cone is 1 cm and its radius is 3 cm, then
h = 1 and r = 3
Substitute them in the rule above
[tex]\begin{gathered} V_c=\frac{1}{3}\times\pi\times(3)^2\times(1) \\ V_c=\frac{1}{3}\times\pi\times9\times1 \\ V_c=3\pi \end{gathered}[/tex]The formula of the volume of the sphere is
[tex]V_{sp}=\frac{4}{3}\times\pi\times r^3[/tex]Since the diameter of the sphere is 3 cm, then
[tex]\begin{gathered} r=\frac{1}{2}\times3 \\ r=\frac{3}{2} \\ r=1.5\operatorname{cm} \end{gathered}[/tex]Substitute it in the formula above
[tex]\begin{gathered} V_{sp}=\frac{4}{3}\times\pi\times(1.5)^3 \\ V_{sp}=4.5\pi \end{gathered}[/tex]Noe subtract them to find the answer
[tex]\begin{gathered} V=4.5\pi-3\pi \\ V=1.5\pi \end{gathered}[/tex]The amount of the extra soap is
[tex]1.5\pi cm^3[/tex]