Find the trigonometric form of the complex number. Hint: Graph the complex number first to give yourself a visual representation.
![Find the trigonometric form of the complex number Hint Graph the complex number first to give yourself a visual representation class=](https://us-static.z-dn.net/files/d91/31e9a88574a0611e4fb3a0e608efd377.png)
First, let's graph the complex number:
The trigonometric form will be given by:
[tex]-2-2i=r(\cos \theta+i\sin \theta)[/tex]The angle θ here is 225° (5π/4), the r-value will be
[tex]\begin{gathered} r=\sqrt[]{(-2)^2+(-2)^2} \\ \\ r=\sqrt[]{4+4} \\ \\ r=\sqrt[]{8}=2\, \sqrt[]{2} \end{gathered}[/tex]Now we have the trigonometric representation:
[tex]-2-2i=2\, \sqrt{2}\mleft(\cos \mleft(\frac{5\pi}{4}\mright)+i\sin \mleft(\frac{5\pi}{4}\mright)\mright)[/tex]Therefore the correct answer is the letter D.