Given the exponential equation:, find a common base and solve for x.
![Given the exponential equation find a common base and solve for x class=](https://us-static.z-dn.net/files/d1d/89a18ad06b1edda618888b37a65702e0.png)
EXPLANATION:
Given;
We are given the exponential equation shown below;
[tex](\frac{125}{8})^{4x-1}=(\frac{4^2}{25^2})^{x+1}[/tex]Required;
We are required to
(i) Find a common base
(ii) Solve for x
Step by step solution;
To solve this problem we shall start with the following steps;
[tex][(\frac{5}{2})^3]^{4x-1}=[(\frac{2}{5})^4]^{x+1}[/tex]For the left side of the equation, we can refine by applying the rule of exponents;
[tex]\begin{gathered} Flip\text{ the left side of the equation:} \\ (\frac{2}{5})^{-3} \end{gathered}[/tex]Therefore, we now have;
[tex][(\frac{2}{5})^{-3}]^{4x-1}=[(\frac{2}{5})^4]^{x+1}[/tex][tex](\frac{2}{5})^{-12x+3}=(\frac{2}{5})^{4x+4}[/tex]We now have a common base and that means;
[tex]\begin{gathered} If: \\ a^x=a^y \\ Then: \\ x=y \end{gathered}[/tex]Therefore;
[tex]-12x+3=4x+4[/tex][tex]-12x-4x=4-3[/tex][tex]-16x=1[/tex]Divide both sides by -16;
[tex]x=-\frac{1}{16}[/tex]ANSWER:
[tex]x=-\frac{1}{16}[/tex]