Given
radius = 5 cm
To get the area of the shaded region, get the difference between the area of the circle, and the area of the triangle
We have the following
[tex]\begin{gathered} A_{\text{circle}}=\pi r^2 \\ A_{\text{circle}}=(3.14)(5\text{ cm})^2 \\ A_{\text{circle}}=(3.14)(25\text{ cm}^2) \\ A_{\text{circle}}=78.5\text{ cm}^2 \\ \\ A_{\text{triangle}}=\frac{1}{2}bh \\ A_{\text{triangle}}=\frac{1}{2}(10\text{ cm})(5\text{ cm})\text{ *the base is twice the radius} \\ A_{\text{triangle}}=25\text{ cm}^2 \\ \\ A_{\text{shaded area}}=A_{\text{circle}}-A_{\text{triangle}} \\ A_{\text{shaded area}}=78.5\text{ cm}^2-25\text{ cm}^2 \\ A_{\text{shaded area}}=53.5\text{ cm}^2 \end{gathered}[/tex]
Therefore, the area of the shaded region is 53.5 cm².