What is the equation for the linear model in the scatterplot obtained by choosing the two points closest to the line

consider two points closest to the line. say ,
[tex]\begin{gathered} (x_1,y_1)=(6,0) \\ (x_2_{}_{}_{},y_2)=(8,1) \end{gathered}[/tex]let us find the slope, m by the formula
[tex]m=\frac{y_2-y_1}{x_2_{}_{}-x_1}[/tex]subsitute the points in the formula,
[tex]\begin{gathered} m=\frac{1-0}{8-6} \\ m=\frac{1}{2} \end{gathered}[/tex]let us find the y - intercept.
[tex]y=mx+b\ldots(1)[/tex]subsitute the one of the point (6,0) in the above equation.
[tex]\begin{gathered} 0=\frac{1}{2}\times6+b \\ 0=3+b \\ b=-3 \end{gathered}[/tex]thus,
subsitute m= 1/2 and b = - 3 in the equation (1),
[tex]y=\frac{1}{2}x-3[/tex]