ANSWER:
Distance of the run: 18 miles
Distance of the bicycle race: 116 miles
STEP-BY-STEP EXPLANATION:
Given:
Total distance = 134 miles
Total time = 7 hours
Average velocity during running = 6 mph
Average velocity during bicycle = 29 mph
Let x be the running distance and y be the bicycle distance.
We know that velocity equals distance in a given time, like this:
[tex]\begin{gathered} v=\frac{d}{t} \\ \\ \text{ Therefore:} \\ \\ t=\frac{d}{v} \end{gathered}[/tex]Knowing the above, we can establish the following system of equations:
[tex]\begin{gathered} t_1+t_2=7\rightarrow\frac{d_1}{v_1}+\frac{d_2}{v_2}=7\rightarrow\frac{x}{6}+\frac{y}{29}=7\text{ \lparen1\rparen} \\ \\ x+y=134\rightarrow x=134-y\text{ \lparen2\rparen} \end{gathered}[/tex]We substitute the second equation in the first and obtain the following:
[tex]\begin{gathered} \frac{134-y}{6}+\frac{y}{29}=7 \\ \\ \frac{(134-y)(29)+6y}{6\cdot29}=7 \\ \\ \frac{3886-29y+6y}{174}=7 \\ \\ 3886-23y=7\cdot174 \\ \\ y=\frac{1218-3886}{-23}=\frac{-2668}{-23} \\ \\ y=116\rightarrow\text{ bicycle distance} \\ \\ \text{ now, for x:} \\ \\ x=134-116 \\ \\ x=18\rightarrow\text{ running distance} \end{gathered}[/tex]Therefore:
The distance of running is 18 miles and the distance by bicycle is 116 miles.