Which one of the following equations could describe the above graph?OA. Y=1.5^(x+2)-3OB. Y=2^x+6Oc. = y=(1/2)^x+6D. Y= 3^(x-1)
![Which one of the following equations could describe the above graphOA Y15x23OB Y2x6Oc y12x6D Y 3x1 class=](https://us-static.z-dn.net/files/ded/34ee9b6f8451ddec66d92b522a518cbb.png)
Given:
The points lie on the graph are (1,1) and (2,3).
Required:
We need to find the equation of the given graph.
Explanation:
Consider the individual equation.
A.
[tex]y=1.5^{(x+2)}-3[/tex]Substitute x =1 and y =1 in the equation.
[tex]1=1.5^{(1+2)}-3[/tex][tex]1=0.375[/tex]This is not true,
This is not a required equation.
B.
[tex]y=2^x+6[/tex]Substitute x =1 and y =1 in the equation.
[tex]1=2^1+6[/tex][tex]1=8[/tex]This is not true,
This is not a required equation.
C.
[tex]y=(\frac{1}{2})^x+6[/tex]Substitute x =1 and y =1 in the equation.
[tex]1=(\frac{1}{2})^1+6[/tex][tex]1=6.5[/tex]This is not true,
This is not a required equation.
D.
[tex]y=3^{(x-1)}[/tex]Substitute x =1 and y =1 in the equation.
[tex]1=3^{(1-1)}[/tex][tex]1=1[/tex]This is true.
Substitute x =2 and y =3 in the equation.
[tex]3=3^{(2-1)}[/tex][tex]3=3[/tex]This is true.
This is a required equation.
Final answer:
[tex]y=3^{(x-1)}[/tex]