It is given that h(x)=fog(x) and h(x)=4(x+1)^2.
So it follows:
[tex]\text{fog(x)}=4(x+1)^2[/tex]For option A, f(x)=x+1,g(x)=4x^2
So the value of fog(x) is given by:
[tex]f(g(x))=g(x)+1=4x^2+1[/tex]So A is incorrect.
For option B, f(x)=(x+1)^2,g(x)=4x^2
So the value of fog(x) is given by:
[tex]f(g(x))=g(x)+1=(g(x)+1)^2=(4x^2+1)^2[/tex]So B is incorrect.
For option C, f(x)=4x^2,g(x)=x+1
So the value of fog(x) is given by:
[tex]f(g(x))=4\lbrack g(x)\rbrack^2=4(x+1)^2[/tex]So C is correct.