Find cosθ, cotθ, and secθ, where θ is the angle shown in the figure. Give exact values, not decimal approximations.cosθ=cotθ=secθ=
![Find cosθ cotθ and secθ where θ is the angle shown in the figure Give exact values not decimal approximationscosθcotθsecθ class=](https://us-static.z-dn.net/files/dd1/9e9d4de9af6ec1636f55857c0058acd3.png)
First let's find the missing value of the hypotenuse:
[tex]\begin{gathered} c^2=a^2+b^2 \\ a=4 \\ b=5 \\ \Rightarrow c^2=(4)^2+(5)^2=16+25=41 \\ \Rightarrow c=\sqrt[]{41} \\ \end{gathered}[/tex]we have that the hypotenuse equals sqrt(41). Now we can find the values of the trigonometric functions:
[tex]\begin{gathered} \cos (\theta)=\frac{adjacent\text{ side}}{hypotenuse} \\ \Rightarrow\cos (\theta)=\frac{4}{\sqrt[]{41}} \\ \sec (\theta)=\frac{1}{\cos (\theta)} \\ \Rightarrow\sec (\theta)=\frac{1}{\frac{4}{\sqrt[]{41}}}=\frac{\sqrt[]{41}}{4} \\ \tan (\theta)=\frac{opposite\text{ side}}{adjacent\text{ side}} \\ \Rightarrow\tan (\theta)=\frac{5}{4} \\ \cot (\theta)=\frac{1}{\tan (\theta)} \\ \Rightarrow\cot (\theta)=\frac{1}{\frac{5}{4}}=\frac{4}{5} \end{gathered}[/tex]