Circle O shown below has an arc of length 34 inches subtended by an angle of 2.1 radians. Find the length of the radius, x, to the nearest tenth of an inch.
![Circle O shown below has an arc of length 34 inches subtended by an angle of 21 radians Find the length of the radius x to the nearest tenth of an inch class=](https://us-static.z-dn.net/files/da1/5baa29f8abe10133f6c6982db53a03d1.png)
16.2 inches
Explanation
the arc length is given by the formula:
[tex]\begin{gathered} arclength=\theta r \\ where\text{ } \\ r\text{ is the radius } \\ \theta\text{ is the angle in radians} \end{gathered}[/tex]so
Step 1
a)let
[tex]\begin{gathered} r=x\text{ \lparen unknown\rparen} \\ angle=\theta=2.1\text{ rad} \\ arclength\text{ = 34 inches} \end{gathered}[/tex]b) now, replace in the formula and solve for x
[tex]\begin{gathered} arclength=\theta r \\ 34\text{ inches=2.1 rad*x} \\ divide\text{ both sides by 2.1 rad} \\ 16.19\text{ inches =x} \\ rounded \\ x=16.2\text{ inches} \end{gathered}[/tex]
therefore, the answer is
16.2 inches
I hope this helps you