SOLUTION
Write out the given point
[tex](8,6)\text{ and (-6,12)}[/tex]The magnitude of the vertor u is the distance between the two point.
[tex]\begin{gathered} \text{distance = }\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \text{Where } \\ x_2=-6,x_1=8 \\ y_2=12,y_1=6 \end{gathered}[/tex]Substitute into the formula, we have
[tex]\begin{gathered} \mleft\Vert u\mleft\Vert=\sqrt[]{(-6-8)^2+(12-6)^2}\mright?\mright? \\ \mleft\Vert u\mleft\Vert=\sqrt[]{(-14)^2+6^2}\mright?\mright? \\ \mleft\Vert u\mleft\Vert=\sqrt[]{169+36}=\sqrt[]{232}\mright?\mright? \end{gathered}[/tex]Hence
|| u || =15.23
The magnitude of the vector is 15.232
Then the direction is obtain by using the formula
[tex]\begin{gathered} \tan \theta=\frac{y_2-y_1}{x_2-x_1} \\ \text{Then } \\ \tan \theta=\frac{12-6}{-6-8}=\frac{6}{-14}=-0.4286 \end{gathered}[/tex]Then we have
[tex]\tan \theta=-0.4286[/tex]take inverse tan of the equation above, we have
[tex]\begin{gathered} \theta=\tan ^{-1}(-0.4286) \\ \theta=156.801^0 \end{gathered}[/tex]Hence
The direction is of u is 156.801°
Answer: Second Option