Respuesta :

GIVEN:

We are given the circle with radius 5 units as shown in diagram number 9.

Required;

To determine the

(a) Diameter

(b) Circumference

(c) Area

Step-by-step solution;

The diameter of any given circle is twice the length of the radius.

This means for the circle given, we have;

[tex]\begin{gathered} Radius=5 \\ \\ Diameter=2\times R \\ \\ Diameter=2\times5 \\ \\ Diameter=10 \end{gathered}[/tex]

The circumference of a circle is given by the formula;

[tex]C=2\pi r[/tex]

Taking the value of pi as,

[tex]\pi=3.14[/tex]

We now have the circumference as;

[tex]\begin{gathered} C=2\times3.14\times5 \\ \\ C=31.4\text{ }units \end{gathered}[/tex]

The area of a circle is given by the formula;

[tex]A=\pi r^2[/tex]

Therefore, we now have;

[tex]\begin{gathered} A=3.14\times5^2 \\ \\ A=3.14\times25 \\ \\ A=78.5\text{ }units^2 \end{gathered}[/tex]

ANSWER:

[tex]\begin{gathered} Diameter=10\text{ }units \\ \\ Circumference=31.4\text{ }units \\ \\ Area=78.5\text{ }units^2 \end{gathered}[/tex]