• An ice cube is slowly melting, losing 3cm^3 of water each hour. If it is always a perfect cube, (V=s^3), what is the rate of change of its side length when it has 8 cm^3 of ice left?
![An ice cube is slowly melting losing 3cm3 of water each hour If it is always a perfect cube Vs3 what is the rate of change of its side length when it has 8 cm3 class=](https://us-static.z-dn.net/files/dad/078a79b12bbd2d96f516c139233b687d.png)
Given:
The volume is decreasing at the rate of 3 cm^3 per hour.
The volume of the left ice is 8 cm^3.
Aim:
We need to find the rate of change of the side of the cube.
Explanation:
Let the length of the cube is denoted as s.
Consider the volume of the cube.
[tex]V=s^3[/tex]Since the volume is decreasing at the rate of 3 cm^3 per hour. we can write,
[tex]\frac{dV}{dt}=-3cm^3\/h[/tex]where t represents time and the negative sign represents decreasing.
Differentiate the volume with respect to s.
[tex]\frac{dV}{ds}=\frac{d}{ds}(s^3)=3s^2[/tex]To find the rate of change of the side length, we use the chain rule.
[tex]\frac{dV}{dt}=\frac{dV}{ds}\frac{ds}{dt}[/tex][tex]\text{ Substitute }\frac{dV}{dt}=-3\text{ and }\frac{dV}{ds}=3s^2\text{ in the equation.}[/tex][tex]-3=\frac{ds}{dt}(3s^2)[/tex][tex]-\frac{3}{3s^2}=\frac{ds}{dt}[/tex][tex]-\frac{1}{s^2}=\frac{ds}{dt}[/tex]Since the left ice is 8 cm ^3.
[tex]V=(s)^3=8[/tex][tex]s^3=2^3[/tex][tex]s=2cm[/tex][tex]Substitute\text{ s =2 in the equation}-\frac{1}{s^2}=\frac{ds}{dt}.[/tex][tex]-\frac{1}{2^2}=\frac{ds}{dt}.[/tex][tex]\frac{ds}{dt}=-\frac{1}{4}[/tex][tex]\frac{ds}{dt}=-0.25cm\text{ per hour}[/tex]Verification:
Let s =2 cm, then the volume is 8cm^3.
Let s =1.75cm, the volume is