Find the cost for each pound of jelly beans and each pound of almonds

Let 'x' represent the cost for each pound of jelly beans.
Let 'y' represent the cost for each pound of almonds.
For the first statement, the mathematical expression is
[tex]\begin{gathered} 9x+7y=37\ldots\ldots1 \\ \end{gathered}[/tex]For the second statement, the mathematical expression is,
[tex]3x+5y=17\ldots\ldots2[/tex]Combining the two equations
[tex]\begin{gathered} 9x+7y=37\ldots\ldots\text{.}.1 \\ 3x+5y=17\ldots\ldots2 \end{gathered}[/tex]Applying the elimination method to resolve the systems of equation
Multiply the second equation by 3, in order to eliminate x
[tex]\begin{gathered} 9x+7y=37\ldots\ldots\ldots1 \\ 3x+5y=17\ldots\ldots\ldots2\times3 \end{gathered}[/tex][tex]\begin{gathered} 9x+7y=37\ldots\ldots\text{.}.1 \\ 9x+15y=51\ldots\ldots2 \end{gathered}[/tex]Subtract equation 1 from 2
[tex]\begin{gathered} 9x-9x+15y-7y=51-37 \\ 8y=14 \\ \frac{8y}{8}=\frac{14}{8} \\ y=\frac{7}{4}=1.75 \\ \therefore y=1.75 \end{gathered}[/tex]Substitute y = 1.75 into equation 1 in order to solve for x
[tex]\begin{gathered} 9x+7y=37 \\ 9x+7(1.75)=37 \\ 9x+12.25=37 \\ 9x=37-12.25 \\ 9x=24.75 \\ \frac{9x}{9}=\frac{24.75}{9} \\ x=2.75 \end{gathered}[/tex]Hence, the cost for each pound of jelly beans = x = $2.75.
the cost for each pound of almonds = y = $1.75.