Respuesta :

Let 'x' represent the cost for each pound of jelly beans.

Let 'y' represent the cost for each pound of almonds.

For the first statement, the mathematical expression is

[tex]\begin{gathered} 9x+7y=37\ldots\ldots1 \\ \end{gathered}[/tex]

For the second statement, the mathematical expression is,

[tex]3x+5y=17\ldots\ldots2[/tex]

Combining the two equations

[tex]\begin{gathered} 9x+7y=37\ldots\ldots\text{.}.1 \\ 3x+5y=17\ldots\ldots2 \end{gathered}[/tex]

Applying the elimination method to resolve the systems of equation

Multiply the second equation by 3, in order to eliminate x

[tex]\begin{gathered} 9x+7y=37\ldots\ldots\ldots1 \\ 3x+5y=17\ldots\ldots\ldots2\times3 \end{gathered}[/tex][tex]\begin{gathered} 9x+7y=37\ldots\ldots\text{.}.1 \\ 9x+15y=51\ldots\ldots2 \end{gathered}[/tex]

Subtract equation 1 from 2

[tex]\begin{gathered} 9x-9x+15y-7y=51-37 \\ 8y=14 \\ \frac{8y}{8}=\frac{14}{8} \\ y=\frac{7}{4}=1.75 \\ \therefore y=1.75 \end{gathered}[/tex]

Substitute y = 1.75 into equation 1 in order to solve for x

[tex]\begin{gathered} 9x+7y=37 \\ 9x+7(1.75)=37 \\ 9x+12.25=37 \\ 9x=37-12.25 \\ 9x=24.75 \\ \frac{9x}{9}=\frac{24.75}{9} \\ x=2.75 \end{gathered}[/tex]

Hence, the cost for each pound of jelly beans = x = $2.75.

the cost for each pound of almonds = y = $1.75.

ACCESS MORE