Which expression is equivalent to sin(71(1) cos (72) - cos () sin (77.)?1?O cos (5)O sin (5)COS2012sin
![Which expression is equivalent to sin711 cos 72 cos sin 771O cos 5O sin 5COS2012sin class=](https://us-static.z-dn.net/files/dc2/e98cf7aee7f5a2531dc6b79a82723939.png)
Let:
[tex]\begin{gathered} A=\frac{\pi}{12} \\ B=\frac{7\pi}{12} \end{gathered}[/tex]Using the sine difference identity:
[tex]\begin{gathered} \sin (A)\cos (B)-\cos (A)\sin (B)=\sin (A-B) \\ so\colon \\ \sin (\frac{\pi}{12})\cos (\frac{7\pi}{12})-\cos (\frac{\pi}{12})\sin (\frac{7\pi}{12})=\sin (\frac{\pi}{12}-\frac{7\pi}{12}) \\ \sin (\frac{\pi}{12}-\frac{7\pi}{12})=\sin (-\frac{6\pi}{12}) \\ \sin (-\frac{\pi}{2}) \end{gathered}[/tex]Answer:
[tex]\sin (-\frac{\pi}{2})[/tex]