For an arch length s, area of sector A, and central angle θ of a circle of radius r, find the indicated quantity for the given value. r=4.28 ft, θ= 2.79, s=?
![For an arch length s area of sector A and central angle θ of a circle of radius r find the indicated quantity for the given value r428 ft θ 279 s class=](https://us-static.z-dn.net/files/ddb/b20d0a37e3a98b51fa83453c38786ca5.png)
The area of a sector S follows the equation:
[tex]S=\frac{1}{2}r^2\theta[/tex]Where θ is the angle and r the radius.
In this case, we have:
• r = 4.28ft
,• θ = 2.79
We write:
[tex]\begin{gathered} S=\frac{1}{2}(4.28)^2\cdot2.79 \\ S\approx25.554168 \end{gathered}[/tex]Then, the answer, rounded up to two decimal places is
[tex]S=25.55[/tex]