Respuesta :

Given:

The sum of terms

[tex]4^3+5^3+6^3..........+13^3[/tex]

Required:

Find sum.

Explanation:

We know sum of cube of first n terms of natural numbers

[tex]\sum_{n\mathop{=}1}^{\infty}n^3=[\frac{n(n+1)}{2}]^2[/tex]

Now,

[tex]\begin{gathered} =(1^3+2^3+....+13^3)-(1^3+2^3+3^3) \\ =[\frac{13(13+1)}{2}]^2-36 \\ =8281-36 \\ =8245 \end{gathered}[/tex]

Answer:

The sum of terms is 8245.