1. Write a function V(x) that models the volume of the box where the length of the sides of the squares is x cm. (The formula for the volume of a box is: V = l ⋅ w ⋅ ℎ).2. Graph V(x). (You may use Desmos or draw in the provided grid.)


From the problem, the length and the width will be reduced by twice the side of the square.
The length of the box will be :
[tex]26-2x[/tex]The width of the box will be :
[tex]20-2x[/tex]and the height will be the measurement of the square side :
[tex]x[/tex]Note that the volume of a box is length x width x height.
1. The volume will be :
[tex]V(x)=x(26-2x)(20-2x)[/tex]Expand and simplify the function :
[tex]\begin{gathered} V(x)=x(26-2x)(20-2x) \\ V(x)=x(520-40x-52x+4x^2) \\ V(x)=x(4x^2-92x+520) \\ V(x)=4x^3-92x^2+520x \end{gathered}[/tex]2. Graph the function using desmos.