Consider parallelogram QRST below.Use the information given in the figure to find m ZR, x, and m ZROS.R.4x1275040°7S
![Consider parallelogram QRST belowUse the information given in the figure to find m ZR x and m ZROSR4x12750407S class=](https://us-static.z-dn.net/files/ddf/ce9d4b898f92cfb7d394095b183da5e8.png)
The opposite angles of a parallelogram are equal, therefore:
[tex]\begin{gathered} m\angle R=m\angle T \\ so\colon \\ m\angle R=75 \end{gathered}[/tex]Opposite sides of a parallelogram are parallel and equal so:
[tex]\begin{gathered} QT=RS \\ 4x=12 \\ x=\frac{12}{4} \\ x=3 \end{gathered}[/tex]∠TSQ and ∠RQS are alternate interior angles, therefore:
[tex]\begin{gathered} m\angle RQS=m\angle TSQ \\ so_{}\colon \\ m\angle RQS=40 \end{gathered}[/tex]