Consider the following polynomial function.f(x) = (x+4)²(x - 2)5(x - 1)Step 2 of 3: Find the x-intercept(s) at which f crosses the axis. Express the intercept(s) as ordered pair(s).AnswerCorrectSelect the number of x-intercept(s) at which f crosses the axis.

Respuesta :

Given the function:

[tex]f\mleft(x\mright)=(x+4)^2\left(x-2\right)^5(x-1\rparen[/tex]

The x-intercept iswhen y =0, so:

[tex]\begin{gathered} x+4=0 \\ x+4-4=0-4 \\ x=-4 \\ \end{gathered}[/tex]

And

[tex]\begin{gathered} x-2=0 \\ x-2+2=0+2 \\ x=2 \end{gathered}[/tex]

And

[tex]\begin{gathered} x-1=0 \\ x-1+1=0+1 \\ x=1 \end{gathered}[/tex]

Therefore, the x-intercepts are:

(-4, 0), (2, 0) and (1, 0)

Answer:

(-4, 0), (2, 0) and (1, 0)