If a car is valued at $27,000 in the year 1992
The value of the car depreciated to $15,000 by year 2000
The formula for the annual rate change is given below as,
[tex]A=P(1-r)^t[/tex]
Where,
[tex]\begin{gathered} A=\text{ \$15,000} \\ P=\text{ \$27,000} \\ t=8\text{years (between 1992 and 2000)} \end{gathered}[/tex]
a) Substitute the values into the formula above,
[tex]\begin{gathered} 15000=27000(1-r)^8 \\ \frac{15000}{27000}=(1-r)^8 \\ \frac{5}{9}=(1-r)^8 \\ \sqrt[8]{\frac{5}{9}}^{}=1-r \\ r=1-0.9292 \\ r=0.0708 \end{gathered}[/tex]
Hence, the annual rate of change, r, is 0.0708 (4 decimal places)
b) The percentage form of the annual rate of change is,
[tex]=0.0708\times100\text{\% = 7.08\%}[/tex]
Hence, the percentage form of the annual rate of change is 7.08%
c) If the car value continues to drop from 1992 to 2004, t = 12 years
The value of the car in the year 2004 will be,
[tex]\begin{gathered} A=P(1-r)^t \\ \text{Where P = \$27000} \\ t=12years \\ r=0.0708 \end{gathered}[/tex]
Substituting the values into the formula above,
[tex]\begin{gathered} A=27000(1-0.0708)^{12} \\ A=27000(0.9292)^{12} \\ A=27000(0.4143)=\text{\$11186.1} \\ A=\text{\$111}90\text{ (nearest \$50)} \end{gathered}[/tex]
Hence, the value in the year 2004 is $11190 (nearest $50)