8.) Rotate 90' clockwise about the orgin:ADEOriginal NewCoordinates CoordinatesA: () A: (___)B: () B: (__)D:() D:(__)E:( _ :) E: (_,_)V:( _,-) V:( _,-)R: (___) R' (_._)RB2
![8 Rotate 90 clockwise about the orginADEOriginal NewCoordinates CoordinatesA A B B D DE E V V R R RB2 class=](https://us-static.z-dn.net/files/db7/2beb175bf5e2877ab61a2e0860746ee8.png)
We have six points that fall in a figure
The original coordinates of this points are:
A: ( -3, 2)
B: ( -3, -4)
D: ( 1, 3)
E: (7, 2)
V: ( 4, 8)
R: ( 3, -2)
To find the new coordinates we must bear in mind that the points must be rotated 90° clockwise.
So, we need to use the next formula to find the new points:
[tex]P(x,y)\to-90^{\circ}\to P^{\prime}(y,-x)[/tex]Finally,
The new coordinates of the points are:
A': ( 2, 3)
B': ( -4, 3)
D': ( 3, -1)
E': ( 2, -7)
V': ( 8, -4)
R': ( -2, -3)