If f(x) = x^2 on the domain [-2, 2] then f^-1
![If fx x2 on the domain 2 2 then f1 class=](https://us-static.z-dn.net/files/dda/7c1dedc1ac2b3ac22a3c61763cca4ab0.png)
SOLUTION:
Step 1 :
In this question, we are given that:
[tex]\begin{gathered} \text{If f ( x ) = x }^2\text{ on the domain of }\lbrack\text{ -2 , 2}\rbrack,^{} \\ \text{Then f }^{-1}\colon \end{gathered}[/tex]Step 2 :
[tex]\begin{gathered} f(x)=x^2 \\ \text{Let y = f( x )} \\ y=x^2 \\ \text{Then we square - root both sides, we have that:} \end{gathered}[/tex][tex]\begin{gathered} x\text{ = }\sqrt[]{y} \\ \text{f }^{-1\text{ }}\text{ ( x ) = }\sqrt[]{\text{ x }}\text{ ( OPTION D )} \end{gathered}[/tex]