We are given that out of 300 people, 111 preferred candidate A. The proportion that prefer candidate A is the number of people that prefer candidate A divided by the total population, like this:
[tex]P=\frac{111}{300}[/tex]Solving the operation:
[tex]P=0.37[/tex]Therefore, the proportion that prefers candidate A is 0.37.
To determine the confidence interval we use the following formula:
[tex]CI=(P-z\sqrt{\frac{P(1-P)}{n}},P+z\sqrt{\frac{P(1-P)}{n}})[/tex]Where:
[tex]\begin{gathered} P=\text{ proportion} \\ n=\text{ size of the population} \\ z=\text{ critical value} \end{gathered}[/tex]The critical value for a 90% confidence interval is:
[tex]z=1.64[/tex]Now, we substitute the values in the formula:
[tex]CI=(0.37-1.64\sqrt{\frac{(0.37)(1-0.37)}{300}},0.37+1.64\sqrt{\frac{(0.37)(1-0.37)}{300}})[/tex]Solving the operations:
[tex]CI=(0.324,0.416)[/tex]And thus we get a confidence interval of 90% confidence.