Determine all solutions to the equation 2cos2 x = 1 − sin x on the interval [0, 2π).
![Determine all solutions to the equation 2cos2 x 1 sin x on the interval 0 2π class=](https://us-static.z-dn.net/files/d88/d4088aef1e21b8906a6bb9731b403e2c.png)
Given:
Expression as
[tex]2cos^2x=1-sinx[/tex]To find:
Determine all solutions to the equation.
Explanation:
If
[tex]Sin\theta=Sin\alpha[/tex]then
[tex]\theta=n\pi+(-1)^n\alpha[/tex]Solution:
First start as:
[tex]\begin{gathered} 2Cos^2x-1+sinx=0 \\ 1+sinx-2sin^2x=0 \\ sinx=\frac{-1}{2},sinx=1 \end{gathered}[/tex]So, solution will be
[tex]x=\frac{\pi}{2},\frac{7\pi}{6},\frac{11\pi}{6}[/tex]Hence, this is the solutions.