Given the values of the linear functions f (x) and g(x) in the tables, where is (f – g)(x) positive? X -8 -5. -2. 1. 4. F(x) -4. -6 -8 -10 -12G(x) -14 -11 -8 -5 -2
![Given the values of the linear functions f x and gx in the tables where is f gx positive X 8 5 2 1 4 Fx 4 6 8 10 12Gx 14 11 8 5 2 class=](https://us-static.z-dn.net/files/d18/80d10eff42dfe809552431b88c5cec09.png)
Given:
The table of function is:
Find-:
Where (f-g)(x) is positive.
Explanation-:
The function of values is:
[tex](f-g)(x)=f(x)-g(x)[/tex]The f(x)-g(x) value is:
[tex]\begin{gathered} f(x)-g(x)=f(-8)-g(-8) \\ \\ =-4-(-14)=\text{ Positive} \\ \\ f(-5)-g(-5) \\ \\ =-6-(-11)=\text{ Positive} \\ \\ f(-2)-g(-2)=-8-(-8) \end{gathered}[/tex]So positive interval for (f-g)(x)
[tex]\begin{gathered} (f-g)(x)=\text{ Positive interval } \\ \\ (-\infty,-2) \end{gathered}[/tex]The positive interval for function ( f - g )( x ) is (-∞, -2)