In the circle below BD = 172° and ACFind m/BXD.
![In the circle below BD 172 and ACFind mBXD class=](https://us-static.z-dn.net/files/d9d/0499c8e550199db2862d11fe11e01e64.png)
Given:
[tex]\begin{gathered} \hat{BD}=172\degree \\ \hat{AC}=56\degree \end{gathered}[/tex]To determine the m[tex]m\angle BXD=\frac{1}{2}(\hat{BD}+\hat{AC})[/tex]We plug in what we know:
[tex]\begin{gathered} \begin{equation*} m\angle BXD=\frac{1}{2}(\hat{BD}+\hat{AC}) \end{equation*} \\ m\angle BXD=\frac{1}{2}(172+56) \\ Calculate \\ m\angle BXD=114\degree \end{gathered}[/tex]Therefore, the answer is:
[tex]\begin{equation*} 114\degree \end{equation*}[/tex]