Answer:
The approximate depth of the water where the disturbance takes place is;
[tex]2,294\text{ m}[/tex]Explanation:
Given the expression;
[tex]s=\sqrt[]{9.81d}[/tex]where; s equals the speed in meters per second and d represents the depth of the water in meters.
Given that the speed of the wave is 150 m/s
[tex]s=150\text{ m/s}[/tex]To solve for the depth d, let us make d the subject of formula in the given expression;
[tex]\begin{gathered} s=\sqrt[]{9.81d} \\ s^2=9.81d \\ d=\frac{s^2}{9.81} \end{gathered}[/tex]substituting the value of s;
[tex]\begin{gathered} d=\frac{150^2}{9.81} \\ d=2,293.57798\text{ m} \\ d=2,294\text{ m} \end{gathered}[/tex]Therefore, the approximate depth of the water where the disturbance takes place is;
[tex]2,294\text{ m}[/tex]