ANSWER
A (-5, -1)
EXPLANATION
We see that the cordinates of A are (1, 1) and that of B are not given.
The midpoint of line AB between A and B is (-2, 0)
The midpoint of two points is given as:
[tex]M(x,y)\text{ = (}\frac{x_1+x_2}{2},\text{ }\frac{y_1+y_2}{2})[/tex]where (x1, y1) = cordinates of A
(x2, y2) = cordinates of B
This means that:
[tex]\begin{gathered} x\text{ = }\frac{x_1+x_2}{2} \\ \Rightarrow\text{ -2 = }\frac{1+x_2}{2} \\ \text{Cross multiply:} \\ 2\cdot\text{ -2 = 1 + }x_2 \\ -4\text{ = 1 + }x_2 \\ \Rightarrow\text{ }x_2\text{ = -4 - 1} \\ x_2\text{ = -5} \end{gathered}[/tex]Also:
[tex]\begin{gathered} y\text{ = }\frac{y_1+y_2}{2} \\ 0\text{ = }\frac{1+y_2}{2} \\ \text{Cross multiply:} \\ 0\cdot\text{ 2 = 1 + }y_2 \\ 0\text{ = 1 + }y_2 \\ \Rightarrow\text{ }y_2\text{ = -1} \end{gathered}[/tex]Therefore, the cordinates of the B are (-5, -1). That is Option A.