Respuesta :

The Solution to problem 1:

Given the quadratic equation below:

[tex]5x^2+7x+2=0[/tex]

We are required to solve using the Formula method.

Step 1:

The quadratic formula is given as below:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

in this case,

[tex]\begin{gathered} a=5 \\ b=7 \\ c=2 \end{gathered}[/tex]

Step 2:

Substituting these values in the formula above, we get

[tex]x=\frac{-(7)\pm\sqrt[]{7^2-4(5)(2)}}{2(5)}[/tex][tex]x=\frac{-7\pm\sqrt[]{49^{}-40}}{10}=\frac{-7\pm\text{ }\sqrt[]{9}}{10}=\frac{-7\pm3}{10}[/tex][tex]\begin{gathered} x=\frac{-7-3}{10}\text{ or x= }\frac{-7+3}{10} \\ \\ x=-\frac{10}{10}\text{ or x=}\frac{-4}{10} \\ \\ c=-1\text{ or x=}\frac{-2}{5} \end{gathered}[/tex]

Therefore, the solution problem 1 is:

[tex]x=-1\text{ or x =-}\frac{2}{5}[/tex]

ACCESS MORE